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Nonlinear Noise Theory for Synchronized
Oscillators

KLAUS F. SCHUNEMANN, MEMBER, IEEE, AND KARL BEHM

Abstract-A nonlinear theory of noise in synehrordzed oscillators is

outlin~ thus extending Kurokawa’s work [1] from smaff to arWrary

injection levels. The description is of phenomenologicaf nature it uses the

dessrib~ function method of control theory for calculating the carrier

wrives, and the circuit theory of periodfcalfy driven nonlinear systems for

so nnaiysis of the noise sidebands. Siiple expressions are derived for the

various output noisea and noise conversion factors in the case wkn tbe

nonffnear characteristic of the active device can be described by a tfdrd-

order (van-der-Pol) polynomial.

I. INTRODUCTION

T HE THEORY OF NOISE in free-running and syn-

chronized oscillators of the negative resistance type

has recently been established [1] and surveyed [2] by

Kurokawa, who combined previous work in a convenient

form for explaining microwave oscillator noise perfor-

mance. Since the nonlinear characteristic of the active

device (Gunn element, IMPATT diode, etc.) was ap-

proximated by a first-order Taylor series expansion

around the operating point, every injection signal must be

small compared to the free-running amplitude. Due to this

restriction, the applicability of the theory is severely

limited. Especially the following cases of practical impor-

tance are not met:

1)

2)

3)

4)

5)

noise and transfer properties of synchronized oscil-

lators for moderate injection levels (“moderate”

means that the injected power is – 20 dB or less

below the output power of the free-running oscilla-

tor);

noise in tightly to moderately coupled oscillators

for mutual synchronization in a power combining

network, or in a mounting structure which contains

several active elements, or in a phased array sys-

tem;

noise in subharmonically synchronized oscillators;

noise in harmonically synchronized oscillators

which are of importance as a frequency-divider

circuit;
noise in multifrequency oscillators.

In cases 3), 4), and 5), Kurokawa’s theory even fails for

small injection levels, for these synchronization schemes

are based upon the nonlinear interaction of the synchro-

nizing and synchronized signals in the active device.
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A further restriction of the general noise theory of [1],

[2] is the assumption that the open-circuit noise voltage

source does not depend on the signal level. To overcome

this, Hines [3], Fikart and Goud [4], and Goedbloed and

Vlaardingerbroek [5] developed a large-signal noise theory

for IMPAIT diodes in free-running oscillators, by apply-

ing the theory of parametric systems to the solution of the

nonlinear Read equation. Thus the system equations have

to be solved twice: for the noise-free carrier amplitudes

and, subsequently, for the small perturbation signals at

the sideband frequencies, which have been assumed to

model the noise behavior. The method can, consequently,

be extended to cover the case of a synchronized oscillator,

which has been done by Goedbloed and Vlaardingerbroek

in [6]. Their theory gives a good quantitative description

of noise and transfer properties of locked amplifiers with

IMPATT diodes. It takes into account both the bias level

and the RF-amplitude dependence of the equivalent noise

sources as well as the contribution of unconverted bias

noise to the output noise spectrum. The theory has been

demonstrated to adequately describe synchronization and

noise performance of realized IMPATT diode oscillators.

The work to be reported here deals with the same

subject as that in [6] but from a different point of view. It

is our aim to outline a nonlinear noise theory for synchro-

nized oscillators by directly extending Kurokawa’s work

to the case of arbitrary injection levels. The description of

the active device is thus phenomenological rather than

physical: the nonlinearity has been modeled by a third-

order (van-der-Pol-type) polynomial, which leads to lucid

and tractable calculations. The method is, hence, suited to

be applied to more complex systems as, e.g., mutually

coupled oscillators and (sub)harmonically synchronized

oscillators. In comparison to the noise theory of [6], one

can state: our theory is inferior if reliable, quantitative

calculations have to be made concerning a realized oscil-

lator with IMPATT diode. It turns out to be superior: 1)

as far as lucidity and tractability of the calculations and

as physical insight into the phenomena involved are con-

cerned, 2) if complex synchronization schemes shall be

investigated, and 3) if the noise performance of a synchro-

nized oscillator with Gunn element shall be analyzed,
because a van-der-Pol-type current-voltage characteristic

in parallel to a nearly constant electronic capacitance

have been shown to adequately model the nonlinear be-

havior of a Gunn element [7]. Furthermore, the equivalent
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open-circuit noise voltage source (or the short-circuit

noise current source) may be assumed to be RF-ampli-

tude-independent in this case.

Our first-order nonlinear noise theory, hence, presents a

compromise between Kurokawa’s work, which arrives at

simple analytical expressions for the oscillator output

spectrum, and that of Goedbloed and Vlaardingerbroek,

which needs time-consuming computations and a com-

plicated matrix formulation. It will be shown that many of

the interesting quantities can be derived in an explicit

form, although the nonlinear effect of a large injection

signal on the oscillator amplitude and phase has been

taken into account.

II. CARRIER WAVE ANALYSIS

The oscillator will be described by a single-tuned circuit

as in [1], [6]. It is shown in Fig. 1. N~ is the nonlinear

element, and ii is an injection current source. This equiv-

alent circuit will later be extended to cover the case of a

circulator-coupled oscillator. First of all, the noise-free

case shall be regarded. For analyzing the “carrier waves”

in the equivalent circuit of Fig. 1, the active device must

be represented by its nonlinear characteristic, e.g., by its

current–voltage characteristic. Then the describing func-

tion method of control theory, which has been introduced

into the microwave field in [8], is an adequate tool for an

analysis, provided that the filtering effect of the linear

part of the network is such that the voltage waveform

across the active device can be guessed. It may consist of

a finite number of sinusoids, of a bias signal, and of

Gaussian noise. This condition normally holds in the case

of a microwave oscillator. Then the analysis proceeds in

the following way: the voltage waveform being known,

the current waveform is calculated from the current-volt-

age characteristic by Fourier analysis. Then the funda-

mental components of current and voltage are related by

the so-called describing function N~, which means the

effective admittance of the nonlinear device. It is ampli-

tude- and, for dynamic nonlinearities, frequency-depen-

dent. With the nonlinear element being replaced by the

quasi-linear operator N~, the circuit of Fig. 1 can be

analyzed by standard techniques yielding amplitude and

frequency of the oscillation. For further details and gener-

alizations, the reader is referrred to [8].
Although the shape of the nonlinearity is arbitrary, we

will model it by a third-order polynomial, because a

van-der-Pol-type characteristic is thought to be a con-

sistent extension of Kurokawa’s work towards an inclu-

sion of nonlinear effects. The current–voltage characteris-

tic is hence assumed to be

i= —a10+aza2-l-a3u3. (1)

The voltage waveform across the active device is given by

v = O.+ 6 Cos (d). (2)

Following [9], the various quantities are normalized

‘“m
Fig. 1. Simple equivalent circuit of synchronized oscitfator.

according to

x=o/vn y=i/I. gL=GL/G. p= P/Pn

with

Vn = dfi- I~=al Vn

Gn=al P.= V#~. (3)

Equations (1) and (2) can then be rewritten

y = – x+ax2+ x3=~(-x), with a =~a2/(a1a3)

(la)

x = Xo+ i. Cos (@t). (2a )

The describing function is defined via

= – 1+2axO+3x~+3/4.i?2. (41)

Maximizing the power pL = PL/ P. in the load conduc-

tance with respect to XO and gL yields for the free-running

case yi = O:

Xo= – a/3 gL = (1+ a2/3)/2

i2=2(l + a2/3)/3 pL = (1 + a2/3)2/6, (5)

The free-running oscillation frequency is

(.()/6).=1, with uO= l/~ . (6)

In the case of a nonzero injection current

y, =yi. cos (wit+ /3)
~FT)

yields the oscillator node equation

[nA+gAl +jP)]i=j,”e”,

a third-order polynomial in iz, from which the voltage

amplitude can be calculated. The phase of the injecticm

current is given by

tan (0) = gLj?/(3.22/4+ gL – 1+2axO+ 3x~). @)

Equations (8) and (9) are valid provided that the oscillator

has been locked to the injection signal. In order to in-

vestigate the stable synchronization range, the system is

tested whether or not additionally injected incremental

input signals will grow up or die away with time [8]. It
turns out that the effect of the nonlinear element on the

incremental signal can be described by a quasi-linear

operator n, which is closely related to n~ via

ni=n.+j~(l+k.e-z~’)$ (10)
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Fig. 2.
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Equivalent circuit of circulator-coupled locked amplifier.

3. Phasor diagram for the equivalent circuit of Fig. 2.

In (10) k = 1 for a synchronous input signal and k = O for a

nonsynchronous one. The stability curves of the synchro-

nized oscillator can then be calculated in the following

way: The nonlinear element in the equivalent circuit of

Fig. 1 is replaced by ni. Setting yi = O, the oscillator node

equation then yields the boundary and locus curves of the

oscillator [8]. If the actual voltage amplitude i of the

synchronized oscillator lies above them, the oscillation is

stable; otherwise it is not.

So far, the carrier wave analysis enables us to determine

both the voltage amplitude of the oscillation and the

stable synchronization range. We will now regard the

more realistic equivalent circuit of Fig. 2, in which the

injection source and the oscillator are coupled via an ideal

circulator. The injected voltage wave x,= q/ Vn and the

current source y, are related by

-1 =Y, /(%). (11)

As the voltage x across the active device is composed of

the injected voltage wave x, plus the reflected voltage

wave XL= V=/ Vn, which appears across the load conduc-

tance, the latter can be determined from
,.

&w J”=i @@- ~ .dv.
2gL

(12)

Here i~ means amplitude and a phase of XL. The corre-

sponding phasor diagram is shown in Fig. 3.

Equations (11) and (12) establish a connection between

the equivalent circuits of Figs. 1 and 2. Thus the output

power at port 3 of the circulator can be calculated with
the injection amplitude Y, and the injection frequency v as

parameters.

III. SIDEBAND NOISE ANALYSIS

We are in a position now to calculate the AM- and

PM-output noise spectra of the synchronized oscillator,

which are due to both the intrinsic noise sources and the

injected noise from the current source yi. With respect to

the small noise signals, the system is periodically driven

by the carriers. Provided that the perturbations are band-

Iirnited in a frequency band surrounding the carrier, and

that the perturbations are small, the noise analysis should

follow the guidelines of a “circuit theory of periodically

driven nonlinear systems” which has been formulated by

Penfield [10]. It is shown that when the perturbations are

expressed in terms of slowly varying voltages and cur-

rents, the relations among these voltages and currents are

linear and time-invariant. There do exist several ways of

representing the perturbations in terms of slowly varying

functions of time: the cosine–sine representation, the am-

plitude–phase representation, and the upper sideband rep-

resentation have been proposed in [10], while a combina-

tion of the lower with the upper sideband has been used in

[3]-[6]. The only difference between the well-known

network theory for the carriers and that for the sideband

signals is that any relation between a perturbation signal

at one network port to that at another one is now a matrix

equation between the corresponding pairs of sideband

signals instead of a simple scalar equation as in the case of

the carrier analysis. The elements of such matrices do, of

course, depend on the carriers of the nonlinear device.

As the circuit theory for the small perturbation signals

is linear, the principle of superposition holds. We will,

hence, calculate the contributions to the output noise

spectra from the intrinsic and from the injected noise

separately.

A. Effect of Intrinsic Noise Sources

The equivalent circuit for the perturbation signals is as

shown in Fig. 1. Here the current source ii may represent

the intrinsic short-circuit noise current source of the active

device which is composed of a pair of pseudo-sinusoids

with random amplitudes and phases at the lower sideband

frequency U[ = u – Ati and at the upper sideband

frequency o.= u + Au. In the following, every voltage or

current has to be represented by its lower sideband por-
tion (index “1”) and by its upper sideband portion (index

“u”).
In order to establish a relation between the noise volt-

age and current at the active device, we assume small

perturbations Ay and Ax to be present according to

y +Ay ‘~(X +Ax), Ay = #Ax =f’(x)Ax,

with f’(x)= – 1+2a.x+3x2. (13)

f’(x) can be expanded into a Fourier series with

coefficients gn = G~ / G.

f’(x) = ~ gmd~”’,

(14)

In the case of a van-der-Pol-type nonlinearity, the g~ are

go= – 1 +2axo+3x~+3_i2/2 gl=l?-1 =ai+3xoi
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g2=g_2=3i2/4 gm = o, for [ml >2. (15) B. E&ect of Injected Noise

If, in addition to the upper and lower sideband vectors, a
That part of the output noise spectrum, which is due to

baseband signal (index “b”) at frequency Ati is assumed
the injected noise, is determined by analyzing the equiv-

too, (1 3)–( 15) yield the desired matrix relation
alent circuit of Fig. 2. The input voltage wave xl has now

to be replaced by a pair X,l and xiU of sidebancl noise

-% go gl gl ‘b vectors. In order to calculate the output noise vectors x~l

YT = gl go g2 “ x; . (16) and x~u, the following system of equations has to be

Y. gl g2 go % solved: 1) the modified node equations

The asterisk denotes the complex conjugate of the corre-

sponding quantity.

We will in the following restrict ourselves to the case

that upconversion from and downconversion to the base-

band can be neglected, because this leads to simple

analytic expressions for the output noise. Moreover, gl

turns out to be zero if the bias is adjusted for maximum

generated power, as will be shown in the next section.

Hence, (16) may be replaced by

Y: . go g2 . x? .

Y. g2 go x.
(16a)

In order to complete the analysis, two node equations

have to be added:

Yil = Y/ + -WL( 1+MA
Yiu=.L + X.a(l +Mu),
A= QL(vi – 1/vI), VI‘CJt/CJO

&= QL(v. – l/vJ, V. ‘oL/uo.

(17)

From (16a) and (17) the noise voltage vectors x, and x.

can be calculated. Assuming a Gaussian amplitude dis-

tribution of the noise current sources yi, and yiw according

to a spectral density

2rp:/cJc
+,=

1 + (@/@c)2
(18)

with rpi the variance and c+ a characteristic frequency, the

AM and PM portions of the spectral density of the noise

voltage xl+ XU across the active device are given by

@A~=(Re2 (x, + x.))+,

@PM = (1rn2 (Xl + x.))+,. (19)

The brackets denote an average over the two independent

phase angles of y,~ and yiU. The AM- and PM-noise power

spectra follow from (19) according to

PAM = @AM”gL” 1 ‘z ppM = $PM.gL. 1 Hz. (20)

It will be shown in the next section that, for some special

cases, the evaluation of (19) and (20) leads to simple

analytic expressions for the AM- and PM-noise spectra.
In order to calculate the noise power spectra at port 3

of the circulator, the phase shift of the output carrier wave

has to be taken into account. According to (12) and the

phasor diagram of Fig. 3, the noise voltage xl+ XU in (19)

has to be multiplied by e ‘~” before the real or imaginary

part is taken. With this modification the output noise can

be calculated from (19) and (20).

YI + ‘lgL( 1 ‘j~f) = gL(xi/ – ‘U)

y.+ ‘.gL( 1 ‘j%) = gL(xiu – ‘L.) (21)

2) the equations corresponding to (12)

XL[ i- Xil = x, XLU-1-Xiu = Xu (22)

and 3) the matrix equation (16a).

It is useful to regard the AM and PM portions of the

input noise separately. In the case of injected AM noise

the stochastic phase angles are related to one another

according to

Xil = Ix,le–’’. f+e

xiU = Ixi If+’. dv (AM noise) (23)I

and in the case of PM noise according to

The output noise power spectra due to injected AM or

PM noise are then given by

PAM(AM) Orp,.w(pM) = (Re2 (XL1 + xLU)e ‘J” )@j” 1 Hz g,[,

pP~(AM) OrppM(pM) = (Im2 (X~l + xLU)e ‘J” )~~” 1 HZ ‘g?,

(25)

with +; the spectral density of the injected noise voltage
wave. The average has to be taken over the stochastic

phase c.

IV. DISCUSSION OF RESULTS

Due to the special choice of the nonlinear characteris-

tic, simple expressions can be derived for the noise spectra

in several cases. In order to simplify the evaluation, we

will first derive some general relations for the Fourier

coefficients g~.

1) If the bias is adjusted for maximum generated power

p~, g, turns out to be zero. This can be proven l~y

regarding

and differentiating with respect to X.

apg an~ (f, .xo) = o

thco - a.xo - (27)

Inserting (4) into (27) yields

Taking (2a) and (14) into account
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i3n~

ax.
—=; gl (29)

i.e., gl = O for optimum bias.

2) For the free-running oscillator, gO= O is valid. This

can be proven by differentiating Pg with respect to x

~=* J: f(x) cos(@t)d(at)

+ ;j:f’(x) m’ (tit) d(@t)
T

,.

= ;(% +go+g’). (30)

In order to further simplify (30), we integrate the right-

hand side of n~ from (4) by parts

[

$7

n~ = ~ f(x) sin (tit)
—’n

-f’f’(x) ~:t)
—77

Inserting (2a) yields

n~ = go —gz.

This relation holds in general for

synchronized oscillators.

By combining (30) with (32)

1sin (tit) d(~t) . (31)

(32)

free-running and for

(33)

Hence, go= O in the free-running state.

3) Last but not least, the incremental input describing

function (10) for a synchronous input signal shall be

related to the Fourier coefficients g~. To this end we write

ni=nA + ~ $$(1 +cos (2y)-j sin (2y)).

(34)

Using the Fourier integral (4) for n~, we can verify that

2 dn~

~ d~ = ‘2”
(35)

Hence, taking (32) into account,

n,= go+ g2(cos (2y) –j sin (2y)). (36)

It shall be emphasized that (29), (32), (33), and (36) hold

for arbitrary current–voltage characteristics ~(x).

Making use of these rather general results, simple ex-
pressions can be derived for the AM- and PM-noise

spectra. In the case of a free-running oscillator

1 1
pAM=~i”l Hz”—

2gL 1+Av2Q:

11.——ppM = ~i” 1 ‘z 2gL AV2Q; ‘ ii=O (37)

with Av = Au/uo. Of course, the spectral dependence of

both the AM and the PM noise corresponds to what has

been derived in [1].

In the case where the oscillator is synchronized at its

free-running frequency (v= 1), the near-carrier output

noise (Av~O) due to the intrinsic noise sources is given

by

1
pAM=~i” 1 ‘z”2gL

(%+ &’2+gL)2

1
PPM ‘Gin 1 Hz”2gL

(go-g2+gL)2’

for v =1, Av+O, ii#O. (38)

The second expression shows the stabilizing effect of the

synchronizing signal on the PM noise. For i,= O the de-

nominator vanishes because of (32). This gives rise to a

sharp PM-noise peak, which is considerably damped even
for small injected signals i, # O for then n~ #gL. The AM

noise is, on the other hand, only weakly influenced by the

injected signal.

Another simple relation, which gives physical insight

into the stabilization mechanism, can be obtained for

V+ 1 but Av*O:

(go-bZ+d2+dQf(v- l/v)2
PAM “#i” 1 Hz”zgL

((go+ d2-d+d@(v-l/v)2)2

(go+gz+gL)2+g:Q:( v-1/v)2
PPM=@t”l Hz”zgL

((go+ g~)2-g;+g;Q;(v - l/v)2)2 ‘

forv#l, Av+O, ii #O. (39)

It is well known [1] that both AM and PM noise

become infinite at the borders of the stable synchroniza-

tion range. This can be derived from (39) as well if one

utilizes (36) in order to calculate the stability condition for

synchronous perturbations. It reads

n, +gL(l +jQL(v– l/v))=O. (40)

Inserting (36) and eliminating y shows that the left-hand

side exactly equals the denominator of (39). The de-

nominator hence coincides with the boundary curve for

stable oscillations.

Simple expressions can also be given for the various

output noise spectra due to the injected AM or PM noise

in the limiting case of v = 1 and AvjO. Then the AM

noise due to AM injection is

PAM(AM) = +;” 1 HZ. 2gL
((gL -g2)2-d)2

((gO+gL)2-d)2 ‘

forv=l, AVSO (41)

while pp~(AM) = O at v = 1. The PM noise due to PM
injection is

PPM(PM) ‘~~. 1 Hz- ZgL
((gL ‘&)2-d)2

((g,+ gL)2-gj2 ‘

forv=l, b+O (42)

while pA~(PM) = O at v = 1.



SCH&MANN AND BEHM: NOISE THEORY FOR OSCILLATORS

I
Pm — ~. -— —..- _

x 1 9L=+. QL=1O

\’ AV.lO-L
$,

dB + av=l

+\ bv=O$9

\\ I Cvzlol

-125

r

“ i- “-‘-

\~

L\

,N\

-130 —–—-
‘\b–—- ; –-–—. .— –—

.’

-15 dB -10 PI——
Pi.

Fig. 4. PM-noise power at the oscillator output due to intrinsic noise
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Fig. 5. AM-noise power at the oscillator output due to intrinsic noise
versus the injection power (p= mearis load power).

Concluding, some numerical examples shall be given. In

Fig. 4 (Fig. 5), the intrinsic PM (AM) noise at the circula-

tor output port is shown versus the injected power. The

normalizing quantities are given by

p== i;gL/2 Pi =~:/(8g~)

pL~=pL(~L = O) = 1/6. (43)

q, has been set to q,= 1/3X 10-14/Hz. The frequency

stabilization effect increases with increasing injection

power. Both AM and PM noise at the circulator output

port are typically 1–2 dB larger than at the device port.

The noise conversion factors PM PM, AM AM, and

AM PM have been shown versus the injection power in

Figs. 6–8. The quantities, which have been labeled by an

additional index “O,” denote the corresponding values of

the free-running oscillator. Supplementary to (43)

p*~~ = 2+; “ 1 HZ “gL”pLO/pr (44)

is the double-sideband AM-noise power of a free-running

oscillator which is coupled to port 1 of the circulator via

an attenuator with transmission coefficient p, /pLo <1. A
similar expression holds for pPMO except that ~~ now is

different from +; in (44). These spectral densities have

been chosen so that pAMo/pLo = – 160 dB and pPMo/pLo=

– 128 dB.
The PM-+PM conversion factor (Fig. 6) is nearly inde-

pendent from the injection power, while the AM~AM

1-x..-

0

dB

-5
L

—

457
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.——. — ——. — —,—

c la
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1 1

-15 dB -10 .
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Fig. 6. PM+PM conversion factor of a synchronized oscillator versus
the injection pow&.
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Fig. 7. AM+AM conversion factor of a synchronized oscillator versu~

I
PPMLWP,

PAM,lPL

-5

dB

-lo

the injection pow~r.

9L=+.QL=10

1 AVZIO<

~,, b v=099

c V=lol

‘+,

~\\
——– ——

; y\,

~ ‘;\

I “J ~

—+ - -*- --—–

~
\\

\\
;\

I ‘j<,c~

I
-15 dB -lo P!——.

$’1.

Fig. 8. AM+PM conversion factor of a synchronized oscillator versus
the injection power.

conversion factor (Fig. 7) linearly increases with p,. The

AM compression is, however, always better than 10 d]).

The AM+PM conversion factor (which is identical to the

PM-+AM conversion factor) strongly decreases with im

creasing injection power (Fig. 8). It is, of course, zero for

V=l.
V. CONCLUSIONS

A nonlinear theory of noise in synchronized oscillators
has been presented which extends Kurokawa’s work [ 1[]
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from small to arbitrary injection levels. The theoretical

approach differs from that of Goedbloed and Vlaardin-

gerbroek [6] in that a phenomenological model of the

active device has been chosen which considerably sim-

plifies the mathematical derivations. As a consequence,

simple expressions could be obtained for various output

noises and noise conversion factors. It is this simplicity

that makes the model a suitable means, if more complex

synchronization schemes (mutually coupled or (sub)

harmonically synchronized oscillators, e.g.) shall be

analyzed. Moreover, the model adequately describes the

output noise of synchronized oscillators with Gunn ele-
ments. It could be extended to account for upconversion

and downconversion effects as well as for an RF-ampli-

tude-dependent intrinsic noise source.
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Microwave Characterization of Silicon E3ARITT
Diodes Under Large-Signal Conditions

GARY K. MONTRESS, MEMBER, IEEE, AND MADHU SUDAN GUPTA,
SEMOR MEMBER, IEEE

Abstract-Experimental measurements of the smafl- and large-signaf

admittance of a sifieon BARflT diode are reported The strrrctoraf cbar-

aeteristics of the deviea are afsu reportedj so that the resnfts provide a

basis for evaforrting the Iarge-sigaaf anafyses of BAIUIT diodes. A

lumped-element frequency-independent equivalent circoit is propmed to

represent the terminal characteristics of the device over a broad-frequency

range, and is verified by comparison with the measured admittances.

Simple approximations are given to describe the dependence of the device

admittance on the three operating point parameters: dc bias corren~ signal

frequency, and RF signal level.

I. INTRODUCTION

o

F THE VARIOUS two-terminal, active, microwave

semiconductor diodes (e.g., IMPATT, TRAPATT,

and Gunn devices), BARUIT diodes are known to have

the limitations of comparatively small power output,
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efficiency, bandwidth, and maximum usable

but they also have the advantages of lower

frequency,

noise and

simpler ‘technology. One of the principal characteristics of

interest is the large-signal admittance Y~ of BARITT

diodes, which dictates the design of circuits employing the

diodes, as well as determines the power and frequency

limitations of the device. This admittance, defined at the

terminals of the semiconductor chip (i.e., excluding the

effect of parasitic introduced by the diode package), is

dependent on three sets of parameters, specifying 1) the

semiconductor material properties, 2) the diode doping

and dimensions, and 3) the operating conditions, includ-

ing the dc bias current l~C, the temperature T, the signal

frequency j, and RF voltage amplitude V~~ of (an

assumed) sinusoidal terminal voltage. In this paper, only
the functional relationship Y~ (l~C, j, ~r@) is studied fOr a

given diode at a given (room) temperature, i.e., with all

other parameters fixed.

Large-signal operating characteristics of BARITT di-

odes have been theoretically studied by a number of

authors in the past, both analytically and numerically

[1]-[10], and the number of small-signal analyses pub-
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