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Nonlinear Noise Theory for Synchronized
Oscillators

KLAUS F. SCHUNEMANN, MEMBER, IEEE, AND KARL BEHM

Abstract—A nonlinear theory of noise in synchronized oscillators is
outlined, thus extending Kurokawa’s work [1] from small to arbitrary
injection levels. The description is of phenomenological nature: it uses the
describing function method of control theory for calculating the carrier
waves, and the circuit theory of periodically driven nonlinear systems for
an analysis of the noise sidebands. Sirmple expressions are derived for the
various cutput noises and noise conversion factors in the case when the
nonlinear characteristic of the active device can be described by a third-
order (van-der-Pol) polynomial.

1. INTRODUCTION

HE THEORY OF NOISE in free-running and syn-

chronized oscillators of the negative resistance type
has recently been established [1] and surveyed [2] by
Kurokawa, who combined previous work in a convenient
form for explaining microwave oscillator noise perfor-
mance. Since the nonlinear characteristic of the active
device (Gunn element, IMPATT diode, etc.) was ap-
proximated by a first-order Taylor series expansion
around the operating point, every injection signal must be
small compared to the free-running amplitude. Due to this
restriction, the applicability of the theory is severely
limited. Especially the following cases of practical impor-
tance are not met:

1) noise and transfer properties of synchronized oscil-
lators for moderate injection levels (“moderate”
means that the injected power is —20 dB or less
below the output power of the free-running oscilla-
tor);

2) noise in tightly to moderately coupled oscillators
for mutual synchronization in a power combining
network, or in a mounting structure which contains
several active elements, or in a phased array sys-
tem;

3) noise in subharmonically synchronized oscillators;

4) noise in harmonically synchronized oscillators
which are of importance as a frequency-divider
circuit;

5) noise in multifrequency oscillators.

In cases 3), 4), and 5), Kurokawa’s theory even fails for
small injection levels, for these synchronization schemes
are based upon the nonlinear interaction of the synchro-
nizing and synchronized signals in the active device.
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A further restriction of the general noise theory of [1],
[2] is the assumption that the open-circuit noise voltage
source does not depend on the signal level. To overcome
this, Hines [3], Fikart and Goud [4], and Goedbloed and
Vlaardingerbroek [5] developed a large-signal noise theory
for IMPATT diodes in free-running oscillators, by apply-
ing the theory of parametric systems to the solution of the
nonlinear Read equation. Thus the system equations have
to be solved twice: for the noise-free carrier amplitudes
and, subsequently, for the small perturbation signals at
the sideband frequencies, which have been assumed to
model the noise behavior. The method can, consequently,
be extended to cover the case of a synchronized oscillator,
which has been done by Goedbloed and Vlaardingerbroek
in [6]. Their theory gives a good quantitative description
of noise and transfer properties of locked amplifiers with
IMPATT diodes. It takes into account both the bias level
and the RF-amplitude dependence of the equivalent noise
sources as well as the contribution of upconverted bias
noise to the output noise spectrum. The theory has been
demonstrated to adequately describe synchronization and
noise performance of realized IMPATT diode oscillators.

The work to be reported here deals with the same
subject as that in [6] but from a different point of view. It
is our aim to outline a nonlinear noise theory for synchro-
nized oscillators by directly extending Kurokawa’s work
to the case of arbitrary injection levels. The description of
the active device is thus phenomenological rather than
physical: the nonlinearity has been modeled by a third-
order (van-der-Pol-type) polynomial, which leads to lucid
and tractable calculations. The method is, hence, suited to
be applied to more complex systems as, e.g., mutually
coupled oscillators and (sub)harmonically synchronized
oscillators. In comparison to the noise theory of [6], one
can state: our theory is inferior if reliable, quantitative
calculations have to be made concerning a realized oscil-
lator with IMPATT diode. It turns out to be superior: 1)
as far as lucidity and tractability of the calculations and
as physical insight into the phenomena involved are con-
cerned, 2) if complex synchronization schemes shall be
investigated, and 3) if the noise performance of a synchro-
nized oscillator with Gunn element shall be analyzed,
because a van-der-Pol-type current—voltage characteristic
in parallel to a nearly constant electronic capacitance
have been shown to adequately model the nonlinear be-
havior of a Gunn element [7]. Furthermore, the equivalent

0018-9480/79 /0500-0452$00.75 ©1979 IEEE



SCHUNEMANN AND BEHM: NOISE THEORY FOR OSCILLATORS

open-circuit noise voltage source (or the short-circuit
noise current source) may be assumed to be RF-ampli-
tude-independent in this case.

Our first-order nonlinear noise theory, hence, presents a
compromise between Kurokawa’s work, which arrives at
simple analytical expressions for the oscillator output
spectrum, and that of Goedbloed and Vlaardingerbroek,
which needs time-consuming computations and a com-
plicated matrix formulation. It will be shown that many of
the interesting quantities can be derived in an explicit
form, although the nonlinear effect of a large injection
signal on the oscillator amplitude and phase has been
taken into account.

II. CARRIER WAVE ANALYSIS

The oscillator will be described by a single-tuned circuit
as in [1], [6]. It is shown in Fig. 1. N, is the nonlinear
element, and j; is an injection current source. This equiv-
alent circuit will later be extended to cover the case of a
circulator-coupled oscillator. First of all, the noise-free
case shall be regarded. For analyzing the “carrier waves”
in the equivalent circuit of Fig. 1, the active device must
be represented by its nonlinear characteristic, e.g., by its
current—voltage characteristic. Then the describing func-
tion method of control theory, which has been introduced
into the microwave field in [8], is an adequate tool for an
analysis, provided that the filtering effect of the linear
part of the network is such that the voltage waveform
across the active device can be guessed. It may consist of
a finite number of sinusoids, of a bias signal, and of
Gaussian noise. This condition normally holds in the case
of a microwave oscillator. Then the analysis proceeds in
the following way: the voltage waveform being known,
the current waveform is calculated from the current—volt-
age characteristic by Fourier analysis. Then the funda-
mental components of current and voltage are related by
the so-called describing function N,, which means the
effective admittance of the nonlinear device. It is ampli-
tude- and, for dynamic nonlinearities, frequency-depen-
dent. With the nonlinear element being replaced by the
quasi-linear operator N,, the circuit of Fig. 1 can be
analyzed by standard techniques yielding amplitude and
frequency of the oscillation. For further details and gener-
alizations, the reader is referrred to [8].

Although the shape of the nonlinearity is arbitrary, we
will model it by a third-order polynomial, because a
van-der-Pol-type characteristic is thought to be a con-
sistent extension of Kurokawa’s work towards an inclu-
sion of nonlinear effects. The current—voltage characteris-
tic is hence assumed to be

i=—ap+a,0’+a,0° (§))
The voltage waveform across the active device is given by
03]

Following [9], the various quantities are normalized

v =14+ -cos (wt).
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Simple equivalent circuit of synchronized oscillator.
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Fig. 1.

according to

x=D/Vn y=l/In gL=GL/Gn p=P/Pn
with
Vn= \ al/a3 Inzaan
G,=a, P,=V,I, (3)

Equations (1) and (2) can then be rewritten

with a=Va,/(a,a,)

y=—x+ax’+x>=f(x),

(1a)
X =Xxq+ £ cos (wi). (2a)
The describing function is defined via
1 T
my=N,/G,=— f_ J(x)-cos (wi)d(wr)
= — 1 +2ax,+3x3+3/4%% 4)

Maximizing the power p, =P, /P, in the load conduc-
tance with respect to x, and g, yields for the free-running
case y;=0:

xo=—a/3 g =(1+a%*/3)/2

£2=201+a%/3)/3 p,=(1+a*/3)’/6.  (5)
The free-running oscillation frequency is

w/wy=1,  withw,=1/VLC. (6)
In the case of a nonzero injection current
y,=y;cos (w;t+8) )
yields the oscillator node equation
[ ny+g (1 +jB) ] X =)3,'eja,
with 8=Q,(v—1/7), r=w/w, Q.= wCO;LC (®)

a third-order polynomial in %, from which the voltage
amplitude can be calculated. The phase of the injection
current is given by

tan (§)=g, B/(3%°/4+ g, —1+2ax,+3x3). (9)
Equations (8) and (9) are valid provided that the oscillator
has been locked to the injection signal. In order to in-
vestigate the stable synchronization range, the system is
tested whether or not additionally injected incremental
input signals will grow up or die away with time [8]. It
turns out that the effect of the nonlinear element on the
incremental signal can be described by a quasi-linear
operator n, which is closely related to n, via
n.=nA+§%’%(l+k-e_zf").

¥

(10)
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Fig. 3. Phasor diagram for the equivalent circuit of Fig. 2.

In (10) k=1 for a synchronous input signal and k=0 for a
nonsynchronous one. The stability curves of the synchro-
nized oscillator can then be calculated in the following
way: The nonlinear element in the equivalent circuit of
Fig. 1 is replaced by n;. Setting y;=0, the oscillator node
equation then yields the boundary and locus curves of the
oscillator {8]. If the actual voltage amplitude X of the
synchronized oscillator lies above them, the oscillation is
stable; otherwise it is not.

So far, the carrier wave analysis enables us to determine
both the voltage amplitude of the oscillation and the
stable synchronization range. We will now regard the
more realistic equivalent circuit of Fig. 2, in which the
injection source and the oscillator are coupled via an ideal
circulator. The injected voltage wave x,=v,/V, and the
current source y, are related by

x,=y,/(28.)- (11
As the voltage x across the active device is composed of
the injected voltage wave x, plus the reflected voltage
wave x; =v, / V,, which appears across the load conduc-
tance, the latter can be determined from
¢ et el — D it
X, e/ =%-e’ 22, e”. (12)
Here X, means amplitude and « phase of x,. The corre-
sponding phasor diagram is shown in Fig. 3.

Equations (11) and (12) establish a connection between
the equivalent circuits of Figs. 1 and 2. Thus the output
power at port 3 of the circulator can be calculated with
the injection amplitude ¥, and the injection frequency » as
parameters.

III. SiDEBAND NOISE ANALYSIS

We are in a position now to calculate the AM- and
PM-output noise spectra of the synchronized oscillator,
which are due to both the intrinsic noise sources and the
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injected noise from the current source y;, With respect to
the small noise signals, the system is periodically driven
by the carriers. Provided that the perturbations are band-
limited in a frequency band surrounding the carrier, and
that the perturbations are small, the noise analysis should
follow the guidelines of a “circuit theory of periodically
driven nonlinear systems” which has been formulated by
Penfield [10]. It is shown that when the perturbations are
expressed in terms of slowly varying voltages and cur-
rents, the relations among these voltages and currents are
linear and time-invariant. There do exist several ways of
representing the perturbations in terms of slowly varying
functions of time: the cosine-sine representation, the am-
plitude—phase representation, and the upper sideband rep-
resentation have been proposed in [10], while a combina-
tion of the lower with the upper sideband has been used in
[3]-[6]. The only difference between the well-known
network theory for the carriers and that for the sideband
signals is that any relation between a perturbation signal
at one network port to that at another one is now a matrix
equation between the corresponding pairs of sideband
signals instead of a simple scalar equation as in the case of
the carrier analysis. The elements of such matrices do, of
course, depend on the carriers of the nonlinear device.

As the circuit theory for the small perturbation signals
is linear, the principle of superposition holds. We will,
hence, calculate the contributions to the output noise
spectra from the intrinsic and from the injected noise
separately.

A. Effect of Intrinsic Noise Sources

The equivalent circuit for the perturbation signals is as
shown in Fig. 1. Here the current source /; may represent
the intrinsic short-circuit noise current source of the active
device which is composed of a pair of pseudo-sinusoids
with random amplitudes and phases at the lower sideband
frequency w, =w — Aw and at the upper sideband
frequency w,=w+Aw. In the following, every voltage or
current has to be represented by its lower sideband por-
tion (index “/”) and by its upper sideband portion (index
“u”).

In order to establish a relation between the noise volt-
age and current at the active device, we assume small
perturbations Ay and Ax to be present according to

y+Ay=fx+4x), A= %Ax =f"(x)Ax,

with f(x)= —142ax+3x% (13)
f(x) can be expanded into a Fourier series with
coefficients g,, =G, /G,

f(x)= 2 g.e,

gn=5- [ F(x)e (). (14)

In the case of a van-der-Pol-type nonlinearity, the g, are

8o=—1+2ax,+3x3+3%%/2 g =g_,=ai+3x,%
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for |m|>2. (15)

If, in addition to the upper and lower sideband vectors, a
baseband signal (index “b”) at frequency Aw is assumed
too, (13)-(15) yield the desired matrix relation

gz=g—2=3’22/4 8n=0,

Vs & &1 &%
YEi=|81 8 &||x"|. (16)
Y. g & 8o |x,

The asterisk denotes the complex conjugate of the corre-
sponding quantity.

We will in the following restrict ourselves to the case
that upconversion from and downconversion to the base-
band can be neglected, because this leads to simple
analytic expressions for the output noise. Moreover, g,
turns out to be zero if the bias is adjusted for maximum
generated power, as will be shown in the next section.
Hence, (16) may be replaced by

Y| _18 £
Vu & &

In order to complete the analysis, two node equations
have to be added:

Ya=y+xg.(1+jB),

V=Y.t x8.(1+jB,),
B=Q.(m—1/v), »=w/w
B.=Q(v,—1/v), v,=w,/w

xf
x, |

(16a)

(17)

From (16a) and (17) the noise voltage vectors x; and x,

can be calculated. Assuming a Gaussian amplitude dis-

tribution of the noise current sources y, and y, according
to a spectral density

29 /w,

1+ (w/w)

with ¢; the variance and w, a characteristic frequency, the
AM and PM portions of the spectral density of the noise
voltage x,+ x, across the active device are given by

Pam=<Re* (x;+x,)>9,

dpv=<Im” (x;+ x,))9,. (19)
The brackets denote an average over the two independent

phase angles of y, and y,,. The AM- and PM-noise power
spectra follow from (19) according to

Pam=¢am8 1 Hz  ppy=¢pyg,- 1 Hz.  (20)
It will be shown in the next section that, for some special
cases, the evaluation of (19) and (20) leads to simple
analytic expressions for the AM- and PM-noise spectra.
In order to calculate the noise power spectra at port 3
of the circulator, the phase shift of the output carrier wave
has to be taken into account. According to (12) and the
phasor diagram of Fig. 3, the noise voltage x;+ x, in (19)
has to be multiplied by e 7* before the real or imaginary
part is taken. With this modification the output noise can
be calculated from (19) and (20).

(18)

1
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B. Effect of Injected Noise

That part of the output noise spectrum, which is due to
the injected noise, is determined by analyzing the equiv-
alent circuit of Fig. 2. The input voltage wave x, has now
to be replaced by a pair x, and x,, of sideband noise
vectors. In order to calculate the output noise vectors x;,
and x;,, the following system of equations has to be
solved: 1) the modified node equations

vt xg (1+jB) =g (x;— x;,)

yu+xugL(1 +jBu)=gL(xiu—xLu) (21)
2) the equations corresponding to (12)
Xyt xy=x Xp,+ X, =X, (22)

and 3) the matrix equation (16a).

It is useful to regard the AM and PM portions of the
input noise separately. In the case of injected AM noise
the stochastic phase angles are related to one another
according to

x;=|x|e e’

x;, = |x;|e*¢”? (AM noise) (23)
and in the case of PM noise according to

x,=—|x|e /e

x,=|x|e’-¢’ (PM noise). (24)

The output noise power spectra due to injected AM or
PM noise are then given by

Pam(AM) or p,\((PM) = (Re? (x,,+ x,,)e ** )¢/ 1 Hz-g,
Pem(AM) or pp(PM) = (Im® (x,,+ x7,)e )¢ 1 Hz-g,,

(25)

with ¢/ the spectral density of the injected noise voltage

wave. The average has to be taken over the stochastic
phase e.

IV. DiscussioN OoF RESULTS

Due to the special choice of the nonlinear characteris-
tic, simple expressions can be derived for the noise spectra
in several cases. In order to simplify the evaluation, we
will first derive some general relations for the Fourier
coefficients g,,.

1) If the bias is adjusted for maximum generated power
P> 8 turns out to be zero. This can be proven by
regarding

Pe=%n,/2 (206)
and differentiating with respect to x,
I, Ing(X,x) .
Inserting (4) into (27) yields
an, 1 7 dx .
B'x—o =% f—ﬂf (X)E)TO cos (wt)d(cot). (28)

Taking (2a) and (14) into account
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dn,

ong _ 2
ax, X2

(29)

i.e., g, =0 for optimum bias.
2) For the free-running oscillator, g,=0 is valid. This
can be proven by differentiating p, with respect to x

d T
_8% = 51; f_ ,,f(x) cos (wr) d(wt)
+ 2—);— f_:f’(x) cos? (wt) d(wt)

x
= 5(”4 +got+82)- (30)

In order to further simplify (30), we integrate the right-
hand side of n, from (4) by parts

ny= % [f(x) sin (w?) N
- [ 1@ dz’:t) sin (wf) d(wt) . (31)
Inserting (2a) yields
ny=8o— 8, (32)

This relation holds in general for free-running and for
synchronized oscillators.

By combining (30) with (32)

Bpg .
- = Xg,.
8)2 gO

(33)

Hence, g,=0 in the free-running state.

3) Last but not least, the incremental input describing
function (10) for a synchronous input signal shall be
related to the Fourier coefficients g, . To this end we write

m=n,+ g— ‘Zj:: (1+cos (27)—J sin (2v)).
(34)
Using the Fourier integral (4) for n,, we can verify that
£ e, (35)
Hence, taking (32) into account,
n,= go+ g,(cos (2y) —j sin (2v)). (36)

It shall be emphasized that (29), (32), (33), and (36) hold
for arbitrary current—voltage characteristics f(x).

Making use of these rather general results, simple ex-
pressions can be derived for the AM- and PM-noise
spectra. In the case of a free-running oscillator

1 1
)/ = i.l Hz — ————
AM= 28, 1+A0°Q}
1 1
Pem=¢; 1 Hz 5— =0 (37)

28, A7Q2

with Av=Aw/w,. Of course, the spectral dependence of
both the AM and the PM noise corresponds to what has
been derived in [1].
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In the case where the oscillator is synchronized at its
free-running frequency (»=1), the near-carrier output
noise (Ar—0) due to the intrinsic noise sources is given
by
R

2
(8+g+8)
I S

2 b
(8~ 8:2+581)
Ar—0, i #0.

Pam=¢; 1 Hz-2g;

pPM=¢i' 1 HZ'2gL

forrv=1, (38)
The second expression shows the stabilizing effect of the
synchronizing signal on the PM noise. For i =0 the de-
nominator vanishes because of (32). This gives rise to a
sharp PM-noise peak, which is considerably damped even
for small injected signals 7,70 for then n,#g,. The AM
noise is, on the other hand, only weakly influenced by the
injected signal.

Another simple relation, which gives physical insight
into the stabilization mechanism, can be obtained for
rv#1 but Av—0:

(g0—8,+8. ) +82Q2(r—1/)
((80+8) g2 +820Xv—1/v))

Pam=91Hz 2g,

(g0+g2+gL)2+g12.Ql%(y_ 1/”)2

((s0+5.)~ 83 +82 02— 1/7)")’
forv=1, Ar—0, i#0. (39)
It is well known [1] that both AM and PM noise
become infinite at the borders of the stable synchroniza-
tion range. This can be derived from (39) as well if one
utilizes (36) in order to calculate the stability condition for
synchronous perturbations. It reads

n+g (1+jQ (v—1/v))=0. (40)
Inserting (36) and eliminating y shows that the left-hand
side exactly equals the denominator of (39). The de-
nominator hence coincides with the boundary curve for
stable oscillations.

Simple expressions can also be given for the various
output noise spectra due to the injected AM or PM noise
in the limiting case of =1 and Ar—0. Then the AM
noise due to AM injection is

pem=¢, 1 Hz-2g,

o V2 2\?
Pam(AM)=¢/-1Hz-2g, (e g2)2 go}z’
((g0+gL) —g§)
forv=1, Ar—0 (41)

while ppy(AM)=0 at »=1. The PM noise due to PM
injection is

(( gL+ g) — gg)z
((g0+8.)—22)

forr=1,

Pem(PM)=¢/ -1 Hz-2g,

Ar—0 (42)
while p,,(PM)=0 at p=1.
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Fig. 4. PM-noise power at the oscillator output due to intrinsic noise
versus the injection power (p, means load power).
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Fig. 5. AM-noise power at the oscillator output due to intrinsic noise
versus the injection power (p; means load power).

Concluding, some numerical examples shall be given. In
Fig. 4 (Fig. 5), the intrinsic PM (AM) noise at the circula-
tor output port is shown versus the injected power. The
normalizing quantities are given by

L= ﬁsz/Z b =)3i2/(8gL)
Pro=p.(y,=0)=1/6. (43)
¢, has been set to ¢,=1/3x10"'*/Hz. The frequency
stabilization effect increases with increasing injection
power. Both AM and PM noise at the circulator output
port are typically 1-2 dB larger than at the device port.

The noise conversion factors PMPM, AMAM, and
AMPM have been shown versus the injection power in
Figs. 6-8. The quantities, which have been labeled by an

additional index “0,” denote the corresponding values of
the free-running oscillator. Supplementary to (43)

Pamo=2¢, 1 Hz g;-p;0/p, (44)

is the double-sideband AM-noise power of a free-running
oscillator which is coupled to port 1 of the circulator via
an attenuator with transmission coefficient p /p,,<1. A
similar expression holds for ppy, except that ¢; now is
different from ¢; in (44). These spectral densities have
been chosen so that psyo/Pro= — 160 dB and ppyvo/Pro=
—128 dB.

The PM—PM conversion factor (Fig. 6) is nearly inde-
pendent from the injection power, while the AM—AM
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Fig. 6. PM—PM conversion factor of a synchronized oscillator versus
the injection power.
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Fig. 7.  AM—AM conversion factor of a synchronized oscillator versus
the injection power.
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Fig. 8. AM-—PM conversion factor of a synchronized oscillator versus
the injection power.

conversion factor (Fig. 7) linearly increases with p,. The
AM compression is, however, always better than 10 dB.
The AM—PM conversion factor (which is identical to the
PM—-AM conversion factor) strongly decreases with in-
creasing injection power (Fig. 8). It is, of course, zero for
=1.
V. CONCLUSIONS

A nonlinear theory of noise in synchronized oscillators
has been presented which extends Kurokawa’s work [I]
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from small to arbitrary injection levels. The theoretical
approach differs from that of Goedbloed and Vlaardin-
gerbroek [6] in that a phenomenological model of the
active device has been chosen which considerably sim-
plifies the mathematical derivations. As a consequence,
simple expressions could be obtained for various output
noises and noise conversion factors. It is this simplicity
that makes the model a suitable means, if more complex
synchronization schemes (mutually coupled or (sub)
harmonically synchronized oscillators, e.g.) shall be
analyzed. Moreover, the model adequately describes the
output noise of synchronized oscillators with Gunn ele-
ments. It could be extended to account for upconversion
and downconversion effects as well as for an RF-ampli-
tude-dependent intrinsic noise source.
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Microwave Characterization of Silicon BARITT
Diodes Under Large-Signal Conditions

GARY K. MONTRESS, MEMBER, IEEE, AND MADHU SUDAN GUPTA,
SENIOR MEMBER, IEEE

Abstract—Experimental measurements of the small- and large-signal
admittance of a silicon BARITT diode are reported. The structural char-
acteristics of the devices are also reported, so that the results provide a
basis for evaluating the large-signal analyses of BARITT diodes. A
lumped-element frequency-independent equivalent circuit is proposed to
represent the terminal characteristics of the device over a broad-frequency
range, and is verified by comparison with the measured admittances.
Simple approximations are given to describe the dependence of the device
admittance on the three operating point parameters: dc bias current, signal
frequency, and RF signal level.

I. INTRODUCTION

F THE VARIOUS two-terminal, active, microwave
O semiconductor diodes (e.g., IMPATT, TRAPATT,
and Gunn devices), BARITT diodes are known to have
the limitations of comparatively small power output,
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efficiency, bandwidth, and maximum usable frequency,
but they also have the advantages of lower noise and
simpler technology. One of the principal characteristics of
interest is the large-signal admittance Y, of BARITT
diodes, which dictates the design of circuits employing the
diodes, as well as determines the power and frequency
limitations of the device. This admittance, defined at the
terminals of the semiconductor chip (i.e., excluding the
effect of parasitics introduced by the diode package), is
dependent on three sets of parameters, specifying 1) the
semiconductor material properties, 2) the diode doping
and dimensions, and 3) the operating conditions, includ-
ing the dc bias current 1, , the temperature T, the signal
frequency f, and RF voltage amplitude Vgip of (an
assumed) sinusoidal terminal voltage. In this paper, only
the functional relationship Y, (/4 f, Vgg) is studied for a
given diode at a given (room) temperature, i.e., with all
other parameters fixed.

Large-signal operating characteristics of BARITT di-
odes have been theoretically studied by a number of
authors in the past, both analytically and numerically
[1]-{10], and the number of small-signal analyses pub-
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